A3M38ZDS

Zpracování a digitalizace analogových signálů

Doc. Ing. Josef Vedral, CSc

Zpracování a digitalizace analogových signálů

Osnovy přednášek:

9. Digitalizace rychlých signálů, vzorkování, kvantování, paralelní, kaskádní, aproximační A/Č převodníky

10. Digitalizace signálů s vysokou rozlišitelností, integrační a delta sigma A/Č převodníky, rozmítání signálu

- 11. Rekonstrukce spojitých signálů, přímá číslicová syntéza
- 12. Testování digitalizátorů v časové, kmitočtové a amplitudové oblasti
- 13. Zásady návrhu a aplikace A/Č obvodů, zemnění, stínění, potlačení šumu

Literatura:

Vedral, J., Fischer, J.: Elektronické obvody pro měřicí techniku, ČVUT, Praha, 2004, ISBN 80-01-02966-2 Ďaďo, S., Vedral, J.: Číslicové měření – přístroje a metody. ČVUT Praha 2006, ISBN80-01-02492-X Dostál, J.: Operační zesilovače, BEN 2005, ISBN 80-7300-049-0 Pallas Areny, R., Webster, J.G.: Sensor and signal conditioning. John Wiley & Sons, 2001, ISBN 0-471-3323-1 Garret, P.H.: Multisensor Instrumentation, John Wiley & Sons, 2002, ISBN 0-471-20506-0

Digitalizace rychlých signálů

Vzorkování signálu Vzorkování signálu s omezeným kmitočtovým rozsahem Sekvenční (stroboskopické) vzorkování Kvantování signálu Závislost doby odběru vzorku na kmitočtu sinusového signálu Kódování signálů Statické parametry A/Č převodníků Dynamické parametry A/Č převodníků v kmitočtové oblasti Kaskádní A/Č převodníky Kompenzační A/Č převodníky Multiplexní A/Č převodníky- systém sběru dat (DAQ) Automatická korekce chyb A/Č systémů Metody zvýšení rozlišitelnosti rychlých A/Č převodníků

Vzorkování signálu

$$u(t_i) = u(t) \sum_{k=-\infty}^{k=\infty} \delta(t - kT_s)$$

$$F_{v}(\omega) = \omega_{a} * F(\sum_{k=-\infty}^{k=\infty} \delta(t - kT_{s}))$$

$$F_{v} = \frac{2\pi}{T_{s}} \sum_{k=-\infty}^{t=\infty} \delta \left(\omega_{a} - k \frac{2\pi}{T_{s}} \right)$$

$$F_{v}(\omega) = \frac{1}{T_{s}} \sum_{k=1}^{k=\infty} F(\omega_{a} \pm k\omega_{s})$$

Podvzorkování $f_s < 2f_a$ vznik záznějových signálů $f_a \pm k f_s$, k = 1, 2,

4

Vzorkování signálu s omezeným kmitočtovým rozsahem

Př.: $f_s = 10$ MS/s, $f_m = 5.5$ MHz, $f_0 = 1$ MHz, $\Delta DR/DR = 0.11$, tj. - 19.2 dB ($\Delta n = 3.2$ bitu)

Sekvenční (stroboskopické) vzorkování

ekvivalentní vzorkovací kmitočet

$$f_{se} = \frac{1}{\Delta T_s}$$

ekvivalentní kmitočtový rozsah

$$EFBW = \frac{f_{se}}{2}$$

Sekvenční náhodné vzorkování

T₁

Adaptivní vzorkování

A3M38ZDS_9

t

Kvantování signálu

q/2 0 -q/2

Kvantovací chyba ideální ADC

 $U_{q} = \sqrt{\frac{1}{q} \int_{-q/2}^{q/2} x^{2} dx} = \frac{2^{-n}}{\sqrt{12}}$

 $U_{\rm sin} = \frac{1}{2\sqrt{2}}$

Efektivní hodnota sin. průběhu

Odstup signál šum ideálního ADC

$$SNR[dB] = 20 \log SNR = 6.02n + 1.76$$

 $SNR = \frac{U_{\sin}}{U_q} = \frac{1}{2\sqrt{2}} \frac{\sqrt{12}}{2^{-n}} = 2^n \sqrt{1,5}$

Dynamický rozsah kvantovací chvba

 $q = 2^{-n}$

$$DR[dB] = 20\log 2^n = 6,02n$$

Vliv doby odběru vzorku T_a

Př.: 8 bitový ideální ADC má $RMS_q = 1,13.10^{-3}$, SNR = 49,9 dB. Pro $T_a = 1$ ns je $f_m = 1,24$ MHz

Závislost doby odběru vzorku na kmitočtu sinusového signálu

$$f_m \le \frac{2^{-n}}{\pi T_a} \frac{FS}{2\sqrt{2}RMS_{\rm sin}}$$

FS rozsah ADC

RMS_{sin} ef. hodnota sinusového signálu

Př.: 8 bitový ideální ADC FS = 1V, $T_a = 1$ ns RMS = 0,2 V, $f_m = 2,2 MHz$.

Ν	2^n	SNR [dB]	<i>DR</i> [dB]
4	16	25,8	24,1
6	64	37,9	36,1
8	256	49,9	48,2
10	1 024	61,6	60,2
12	4 096	74,0	72,2
14	16 384	86,1	84,3
16	65 536	98,1	96,3
18	262 144	110,1	108,4
20	1 048 576	122,2	120,4
22	4 194304	134,2	132,4
24	167 772 16	146,2	145,0

Kódování signálů

Statické parametry A/Č převodníků

Chyba nuly U_{o}/U_{r} (Offset Error) Chyba zesílení U_{G}/U_{r} (Gain Error) Teplotní, časové, napájecí drifty Integrální nelinearita $INL = U_{INL}/U_{r}$ Diferenciální nelinearita $DNL = U_{DNL}/U_{r}$ Nemonotónost (Nonmonotonicity) Chybějící kódové slovo (Missing Code) Hystereze př. Charakteristiky

$$DNL_{j} = -\sum_{i=2}^{j} INL_{i}$$
$$\sum_{i=2}^{n-2} DNL_{i} = 0$$

Určení parametrů lineární regresí

Dynamické parametry A/Č převodníků

Časová oblast: doba odběru vzorku, nejistota doby odběru, sběrná doba, doba převodu

Kmitočtová oblast: SINAD odstup signál šum a zkreslení Signal - Noise and Distortion)

SNHR odstup signál šum bez harmonických složek (Signal - Nonharmonic Distortion)
SFDR odstup nejvyšší rušivé složky od zákl. složky (Spourius Free Dynamic Range)
ENOB efektivní počet bitů (Effective Number of Bits)
THD zkreslení vyššími harmonickými (Total Harmonic Distortion)
IMD intermodulační zkreslení (Intermodulation Distortion)
ER efektivní rozlišitelnost (Effective Resolution)

A3M38ZDS_9

11

typ	výrobce	počet bitů	Ts [MSa/s]	<i>C</i> _{<i>IN</i>} [pF]	ΔT_a [ps]
MAX100	М	8	250	5	2
MAX104	М	8	1 000	2,5	0,5
MAX106	М	8	600	3	1
MAX108	М	8	1 500	2,5	0,5

vstup	stav komparátorů	dvojkový kód	Greyův kód
U_a/U_r	k ₇ k ₆ k ₅ k ₄ k ₃ k ₂ k ₁	a_1 a_2 a_3	$a_1 a_2 a_3$
0	0 0 0 0 0 0 0	0 0 0	0 0 0
1/8	0 0 0 0 0 0 1	0 0 1	0 0 1
1/4	0 0 0 0 0 1 1	0 1 0	0 1 1
3/8	0 0 0 0 1 1 1	0 1 1	0 1 0
1/2	0 0 0 1 1 1 1	1 0 0	1 1 0
5/8	0 0 1 1 1 1 1	1 0 1	1 1 1
3/4	0 1 1 1 1 1 1	1 1 0	1 0 1
7/8	1 1 1 1 1 1 1	1 1 1	1 0 0

Greyův kód - odstraní hazardy při kódování

A3M38ZDS_9 $T_p = 2T_s = \frac{2}{f_s}$

Vzorkování - zápisem stavu komparátorů do registru

Kvantování - v paralelně řazených komparátorech

Sdílení času (Pipeling) současné vzorkování, kvantování a kódování po sobě jdoucích vzorcích

Paralelním řazením více ADC lze zvýšit vzorkovací kmitočet - prokládané vzorkování

Kaskádní A/Č převodníky

Sériový A/Č převodník

 $T_p = nT_s = \frac{n}{f_s}$

Sériově - paralelní A/Č převodník s korekci R_2 4 (5) LSB IN Č/A₂ A/Č₁ 4 A/Č₂ Σ S/H Ζ 4 4 (5) 4 MSB S_1 • S₂ °s₃ S₄

typ	počet bitů	f _s [MSa/s]	T _a [ns]	∆ <i>T</i> a [ps]
AD9480	8	250	1,5	0,25
AD9230	12	250	1	0,2
AD9254	14	150	0,8	0,1
AD9461	16	130	3.5	0.05

Sériově - paralelní A/Č převodník

Korekce nemonotonosti převodní charakteristiky

Překrývání rozsahu (Overanging)

Sdílení času (Pipeling)

A3M38ZDS_9

8

Kompenzační A/Č převodníky

Aproximační A/Č převodník

Sledovací A/Č převodník

Multiplexní A/Č převodníky- systém sběru dat (DAQ)

typ	počet bitů	počet kanálů	f _s [kSa/s]	výstup	spotřeba [mW]
AD7824	8	4	1 000	paralelní	100
AD7825	8	4	2 000	paralelní	45
AD7828	8	8	1 000	paralelní	100
AD7829	8	8	2 000	paralelní	45
AD7858	12	8	100	sériový i paralelní	10
AD7891	12	8	500	sériový i paralelní	50
AD7864	12	4	150	paralelní	130
AD7865	14	4	350	paralelní	130
AD7672	16	2	450	sériový i paralelní	120
AD7490	16	16	1 000	sériový i paralelní	10

Počet kanálů: 8 až 64 (Single, Diff.) Zesílení MZ 1 až 1024 Rozlišitelnost: 8 až 16 bitů Vzorkovací frekvence: až 2 Msa/s Samostatné izolační zesilovače Samostatné S/H

Způsoby sběru dat:

postupné přepínání kanálů

selektivní přepínání kanálů

užití S/H obvodů v každém kanálu umožňuje současný odběr vzorků signálů ve všech kanálech v jednom časovém okamžiku (měření časových souvislostí)

Automatická korekce chyb A/Č systémů

stup uzemněn
$$D_0 =$$

K převodní konstanta, U_0 aditivní chyba

2. Vstup U_r

$$D_r = K(U_r + U_0)$$

3. Vstup U_x

$$D_x = K(U_x + U_0)$$

$$U_x = \frac{D_x - D_0}{D_r - D_0} U_r$$

interní kalibrátor napětí

zpracování dat v mikroprocesoru - výpočtem

- tabulkou

možnost adaptivní změny rozsahu a vzorkovacího kmitočtu systému - úspora paměti Číslicová filtrace signálu - redukce šumu $1/\sqrt{N}$

N počet nezávislých odměrů téže veličiny

Metody zvýšení rozlišitelnosti rychlých A/Č převodníků

Paralelní řazení A/Č převodníků

statistická nezávislost kvantovacího šumu A/Č redukce kvantovací chyby na $1/\sqrt{N}$, N počet A/Č

Zvětšení počtu efektivních bitů o

$$\Delta n_{ef} \approx \log_2 \sqrt{N}$$

Např. pro N = 4 vzroste počet ef. bitů o 1 bit

Rozmítáním vstupního signálu A/Č převodníku náhodným nebo pseudonáhodným signálem s amplitudou větší než 1LSB a následnou číslicovou filtrací výstupního signálu převodníku se zvýší rozlišitelnosti o

$$\Delta n_{ef} \approx \log_2 \sqrt{N}$$

N je počet průměrovacích cyklů.

Např. pro N = 256 vzroste teoretická rozlišitelnost o 8 biů, ale efektivní rozlišitelnost jen o 4 bity

Užití zejména u $\Delta\Sigma$ převodníků

Digitalizace signálů s vysokou rozlišitelností

Integrační A/Č převodníky s dvou a třítaktní integrací Integrační A/Č převodník se čtyřtaktní integrací Potlačení sériového rušení Převodníky napětí kmitočet Synchronizovaný převodník napětí kmitočet A/Č převodník s Delta Sigma modulací Převzorkování a redukce kvantovacího šumu Sigma Delta převodníky s modulátory 2. a 3. řádu Odstup SNR modulátorů vyšších řádů Kaskádní struktury modulátorů vyšších řádů MASH Rušivé signály v sigma-delta převodnících Potlačení rušivých signálů rozmítáním signálu Obvodová realizace sigma-delta převodníků

Převodníky napětí kmitočet

Nevýhody:

nestabilita doby kyvu T_k

asynchronnost výstupních impulsů převodníku vzhledem ke kmitočtu generátoru

Údaj čítače $N = fT_0 \pm 1$

Převodníky napětí kmitočet

Synchronizovaný převodník U/f

typ	f _{max} .	NL	f _s
	[MHz]	[%]	[MHz]
ADVF32	0,5	10 ⁻³	-
AD537	0,15	1,5.10 ⁻³	-
AD654	0,5	3.10 ⁻⁴	-
AD650	1	5.10 ⁻⁵	-
AD652	4	2.10 ⁻⁵	2

Převodník U/f se symetrickým výstupním napětím integrátoru

Aplikace převodníků kmitočtová modulace systémy s vysokým rozlišením (24 bit) izolační FM přenos telemetrické systémy 20

Integrační A/Č převodníky

Integrační A/Č převodník s třítaktní integrací (Triple Slope) – potlačení kvantovací chyby

Integrační A/Č převodník se čtyřtaktní integrací

- 1. To sepnut So náboj na C nulován
- 2. T_1 sepnut S₁ integrováno napětí $U_r + U_0$
- 3. T_2 sepnut S₂ integrováno napětí $U_0 U_r$

$$\frac{T_1}{T_2} = \frac{U_r - U_0}{U_r + U_0}$$

- 4. T_3 sepnut S₃ integrováno napětí $U_a + U_0$
- 5. T_4 sepnut S₁ integrováno napětí U_r - U_0

$$U_{a} = (U_{r} - U_{0})\frac{T_{4}}{T_{3}} - U_{0}$$
$$U_{0} = \frac{T_{2} - T_{1}}{T_{2} + T_{1}}U_{r}$$

Při $U_0 = 0$ je $T_1 = T_2$ a $U_a = U_r T_4 / T_3$

Symetrické přepínání vstupních napětí integrátoru eliminuje jeho nelinearitu a dynamické chyby.

Potlačení sériového rušení

A/Č převodník s Delta Sigma modulací (1 bitový kvantizátor)

$$U_1 \approx U_r \frac{T_2 - T_1}{T_1 + T_2}$$

Převzorkování a redukce kvantovacího šumu (Oversampling)

Kvantovací chyba ideální ADC v pásmu **f**_v**/2**

Efektivní hodnota vstupního sin. signálu s rozkmitem FS převodníku

Redukovaný výkon kvantovacího

Kvantovací chyba ideální ADC

v pásmu f,/2 při převzorkování

Odstup signál šum

šumu při *k* násobném převzorkování OSR

Odstup signál šum při

převzorkování

(OSR)

 $U_{q} = \sqrt{\frac{1}{q} \int_{-q/2}^{q/2} x^{2}} dx = \frac{2^{-n}}{\sqrt{12}}$

$$U_{SIN} = \frac{1}{2\sqrt{2}}$$

$$SNR = 20\log \frac{U_{SIN}}{U_q} = 6,02n + 1,76(dB)$$

 $\left(\frac{2^{-n}}{\sqrt{12}}\right)^2 = \left(\frac{OSRf_v}{2U_{qk}}\right)^2$

$$SNR_k = 20\log \frac{U_{SIN}}{U_{qk}} =$$

 $6,02n+1,76+10\log OSR(dB)$

 $\Delta SNR = SNR_k - SNR = 10\log OSR(dB)$

OSR = 4 $\Delta SNR = 6,02 \text{ dB } \Delta n = 1 \text{ bit}$ OSR = 16 $\Delta SNR = 12,04 \text{ dB } \Delta n = 2 \text{ bity}$ $OSR = 256 \Delta SNR = 24,08 \text{ dB } \Delta n = 4 \text{ bity}$

Zvýšení odstupu signál šum při převzorkování

A3M38ZDS_10

25

Tvarování kvantovacího šumu (Noise Shaping)

Blokové schéma modulátoru v rovině Z

Charaketristická rovnice

$$Y(z) = H(z) \cdot (X(z) - Y(z)) + N(z)$$

Kvantizační šum N(z)

Přenos integrátoru

$$H(z) = \frac{z^{-1}}{1 + z^{-1}}$$

Přenosová funkce signálu STF N(z) = 0(Signal Transfer Function)

$$STF = \frac{Y(z)}{X(z)} = \frac{H(z)}{1 + H(z)} = z^{-1}$$

Přenos signálu je zpožděn o 1 takt

Přenosová funkce šumu $NTF \quad X(z) = 0$ (Noise Transfer Function)

$$NTF = \frac{Y(z)}{N(z)} = \frac{1}{1 + H(z)} = 1 - z^{-1}$$

Přenos horní propusti 1. řádu s mezním kmitočtem *kf*_v /2 Složky šumu pod tímto kmitočtem jsou potlačeny Složky šumu nad tímto kmitočtem jsou zvýrazněny

Účinnější potlačení kvantovacího šumu se dosahuje užitím integrátorů vyšších řádů, 2. a 3. řádu Problémy se stabilitou obvodů

Sigma Delta převodníky s modulátory 2. a 3. řádu

Odstup SNR modulátorů vyšších řádů

Kaskádní struktury modulátorů vyšších řádů MASH (Multi-Stage Noise Shaping)

Klasické sigma-delta modulátory *k*-tého řádu integrují rozdílový signál *k* po sobě jdoucími integrátory, struktury MASH k tomu využívají *k* samostatných modulátorů 1. řádu

U MASH struktury následující modulátor zpracovává kvantizační šum *N*(*z*) z modulátoru předchozího.

Kvantizační šum je získán rozdílovými členy, které odečítají výstup z D/A převodníku od rozdílového signálu z integrátoru.

Zpřesnění převodu dochází opakovaným kvantováním kvantizačního šumu z předchozí sekce modulátoru.

Teoreticky je možné zapojit do kaskády libovolný počet sekcí.

U reálných převodníků MASH se negativně projevují výrobní odchylky mezi jednotlivými obvodovými prvky

Obvykle se užívají struktury MASH 4. řádu

Rušivé signály v sigma-delta převodnících (Idle Tones, Idle Patterns)

Časové průběhy při stejnosměrném vstupním napětí o velikosti 0,93U_{REF}

Nízké kmitočty jsou zdrojem rušivých tónů

Čím více se vstupní stejnosměrné napětí bude blížit *U*_{REF}, tím nižší bude opakovací kmitočet PDM posloupnosti na výstupu modulátoru

Může být tak nízký, že zasáhne až do užitečného pásma převodníku

Protože se jedná o obdélníkový signál, objeví se navíc ve spektru i jeho postranní složky na násobcích kmitočtu f_v

Rušení má charakter tónů, jejichž frekvence se mění v závislosti na vstupním stejnosměrném napětí

Jejich přítomnost je např. při zpracování audio signálů naprosto nepřípustná, protože lidský sluch je na úzkopásmové signály velmi citlivý

Potlačení rušivých signálů rozmítáním signálu (Dithering)

Teoretické zvýšení rozlišitelnosti

$$\Delta n_{ef} \approx \log_2 \sqrt{N}$$

N je počet průměrovacích cyklů.

Např. pro N = 256 vzroste teoretická rozlišitelnost o 8 btů, ale efektivní rozlišitelnost jen o 4 bity.

Kmitočtový rozsah signálu je redukován 1:256.

Užití: zvýšení rozlišitelnosti digitalizátorů, odstranění rušivých tónů při digitalizaci akustických a obrazových signálů

Digitalizovaný signál rozmítán rozmítacím signálem, jehož mezivrcholová hodnota je větší než několik LSB A/Č převodníku a jehož střední hodnota je nulová.

Rozmítací signál – periodický s nulovou střední hodnota, např šum, sinus, trojúhelník.

Intrusivní dithering - číslicový signál z A/Č převodníku odečítán od rozmítacího signálu.

Neintrusivní dithering - číslicový signál z A/Č převodníku není odečítán od rozmítacího signálu, častější případ.

Dthering zabraňuje výskytu rušivých mezitónů (Idle Tones).

Dithering snižuje kvantizační šum převodníku, zmenšuje jeho diferenciální nelinearitu, ale nezlepšuje integrální nelinearitu.

Přehled parametrů Delta Sigma A/Č převodníků

typ	výrobce	Jmenovité rozlišení	počet kanálů	f _v [kSa/s]	spotřeba [mV]	aplikace
AD7705	AD	8/16	2D	20 - 50	20	obecné
AD7710	AD	16(24)	2D	0,01-1	10	RTD snímače termočlánky
AD7711	AD	16(24)	1D,1S	0,01-1	10	RTD snímače termočlánky
AD7712	AD	16(24)	2D(1D,1S)	0,01-1	10	RTD snímače termočlánky
AD4413	AD	16(24)	1 S	0,01-1	10	RTD snímače termočlánky
AD7714	AD	16(22)	4 S	0,01-1	10	RTD snímače termočlánky
AD7732	AD	16(24)	2D	0,3 – 12,3	15	obecné
AD7734	AD	16(24)	4S	0,3 – 12,3	15	obecné
AD7738	AD	16(24)	4D(8S)	0,3 – 12,3	15	obecné
AD7723	AD	16	1	1 200	30	obecné
AD9260	AD	16	1	2 500	20	obecné
AD7360	AD	16	6S	8 - 64	100	obecné

16(24) značí jmenovité rozlišení 16 bitů a zvýšené rozlišení 24 bitů

Efektivní rozlišení je cca 15 bitů a 21 bitů

S značí jednopólový přepínač, D dvoupólový přepínač

AD7710 až AD7713 mají měřicí zesilovač s přepínatelným zesílením 1 až 256

Vlastnosti A/Č převodníků

typ převodníku	výhody	nevýhody
delta sigma	vysoká rozlišovací schopnost až 24 bitů jednoduché obvodové řešení nepotřebuje externí S/H obvod nepotřebuje antialiasingový filtr Vysoké potlačení <i>SMRR</i> (160 dB) Vysoké potlačení <i>CMRR</i> (120 dB)	nízký vzorkovací kmitočet řádově stovky kSa/s
integrační	vysoká rozlišovací schopnost až 24 bitů Vysoké potlačení <i>SMRR</i> (120 dB) Vysoké potlačení <i>CMRR</i> (120 dB)	nízký vzorkovací kmitočet řádově stovky kHz nutnost velkých kapacit v integrátoru
aproximační	dobrá rozlišovací schopnost až 18 bitů malá plocha čipu – nízká spotřeba	nutnost užití vzorkovací jednotky vzorkovací kmitočet řádově jednotky MSa/s přesnost závislá na přesnosti interního DAC
kaskádní	dobrá rozlišovací schopnost až 16 bitů vysoký vzorkovací kmitočet řádově stovky MSa/s	nutnost užití principu sdílení času a korekce dat přesnost převodu závisí na přesnosti prvních bloků
paralelní	nejvyšší vzorkovací kmitočet až 2,5 GSa/s	nízké rozlišení do 8 bitů při vyšším rozlišení velká plocha čipu vysoká spotřeba

Hraniční rozlišitelnost cca 32 bitů je určena šumem přechodů – chlazení 4,2 K

Hraniční vzorkovací kmitočet 10 GSa/s je určen rychlostí pohybu nositelů náboje v přechodech Si

GaAs struktury jsou cca 10x rychlejší než Si struktury

Elektrooptické struktury jsou cca 100x rychlejší než Si struktury

Rekonstrukce spojitých signálů

Rekonstrukce kmitočtově omezeného signálu

Parametry Č/A převodníků

Číslicově analogové převodníky se spínanými odporovými sítěmi

Číslicově analogové převodníky se spínanými proudovými zdroji

Násobící Č/A převodníky

Číslicově analogové převodníky se zvýšenou přesností

Modulační číslicově analogové převodníky

Č/A převodníky se spínanými kapacitory

Přímá číslicová syntéza DDS

Kmitočtová syntéza

Rekonstrukce kmitočtově omezeného signálu

Př.: $f_0 = f_s/2$ pokles amplitudové charakteristiky - 0,636, tj – 3,9 dB

Rekonstrukce sinusového signálu

 $U_{k} = \frac{\sin(k\pi/M)}{k\pi/M}$

		O_1	
Počet vzorků / periodě M	První pár vyšších harmonických	<i>THD</i> [dB] bez filtru	<i>THD</i> [dB] s filtrem 1. řádu
4	3, 5	- 6,5	- 18,3
8	7,9	- 13,3	- 32,4
16	15, 17	- 20,1	- 44,7
32	31, 33	- 27,3	- 57,1
64	63, 65	- 31,7	- 68,9
128	127, 129	- 38,1	- 80,9
256	255, 257	- 45,2	- 94,0

 $THD = 20\log_{10}\frac{\sqrt{\sum_{i=2}^{\infty}U_i^2}}{T}[dB]$

Parametry Č/A převodníků

váhová síť R-2R síť kombinovaná síť U, U, R R₁ MSB MSB 1 a₁∘ a,∘ 2R 2R R 2 - U_{a} R_2 Ua Ua a₂ • a, • 4R 2R 3 ⊶ R 8R $R_{s} = \frac{2^{n-j-1}}{2^{n-j}-1} (2^{j}-1)R$ 4 °— LSB LSB R_n S a_∘ a_∘ R 2R R R_k 2R 5 ⊶ 2R 6 - $I_1 = \frac{U_r}{2R} \qquad I_2 = \frac{U_r}{4R}$ 4R $R_i = 2^{i-1} R, i = 1, 2, ..., n$ 7 - $U_a = 2U_r \frac{R_z}{R} \sum_{i=1}^n a_i 2^{-i}$ $U_{a} = -U_{r} \frac{R_{z}}{R} \sum_{i=1}^{n} a_{i} 2^{-i}$ 8R R, G vysoká přesnost pouze 2 odpory rezistorů BIN nejsou proudové interakce menší časové konstanty $R_{\rm s} = 7,5R, R_{\rm z} = R \ a \ R_{\rm k} = 8R$ velký rozsah odporů proudové interakce BCD rozdílné časové konstanty menší dosažitelná přesnost

Číslicově analogové převodníky se spínanými odporovými sítěmi

A3M38ZDS_11

 $R_{\rm s} = 4,32 {\rm R}, R_{\rm z} = 0,8 {\rm R} {\rm a} R_{\rm k} = 4,8 {\rm R}$ 37

rezistorů

Číslicově analogové převodníky se spínanými proudovými zdroji

Číslicově analogový převodník se spínanými proudovými zdroji

$$U_a = -IR_z \sum_{i=1}^n a_i 2^{i-1}$$

Přednosti:

vysoká přesnost, shodné proudy proudových zdrojů neuplatňují se parazitní časové konstanty rezistorů

Číslicově analogový převodník s proudovými sběrnicemi

$$U_{a} = -I_{r}R_{z}\sum_{i=1}^{n}a_{i}2^{i-1}$$
 unipolární U_{a}
$$U_{a} = I_{p} - I_{r}R_{z}\sum_{i=1}^{n}a_{i}2^{i-1}$$
 bipolární U_{a}

 $I_r = \frac{U_r}{2R_1}$ polaritní proud

typ	n	INL, DNL	T _u
DAC08	8	0,5 (1)	50 ns
AD565	12	1 (2)	200 ns
AD768	16	1 (2, (4)	450 ns

Násobící Č/A převodníky

Násobící a dělící Č/A převodníky

Sinusový Č/A převodník

Převodníky se shodnými rezistory

Číslicově analogové převodníky se zvýšenou přesností

Kombinované Č/A převodníky

Převodníky s cyklickým přepínáním rezistorů

Dělicí poměr není určen hodnotami rezistorů, ale pouze jejich počtem

Zaručená monotónost převodní charakteristiky (AD569)

Modulační číslicově analogové převodníky

Č/A převodníky se spínanými kapacitory

$$Q = CU_{r} \sum_{i=1}^{n} a_{i} 2^{i} \qquad \qquad U_{a} = -\frac{Q}{C_{z}} = -U_{r} \frac{C}{C_{z}} \sum_{i=1}^{n} a_{i} 2^{i}$$

Sigma delta Č/A převodníky

Interpolační filtr

-interpolace 0. řádu (schodovitá)

- interpolace 1. řádu (lineární)

-interpolace vyšších řádů (plolynomy až 8. řádu)

Nízkopříkonové obvody

Rozlišitelnost 8 až 12 bitů

Vzorkovací kmitočet: 100 kSa/s až 1 MSa/s

Přímá číslicová syntéza DDS (Digital Direct Synthesis)

$$S = \frac{RI_m}{T_p} = \frac{U_m}{2^n} f_g \qquad T_p = \frac{2^n}{f_g}$$
$$C = \frac{2^n I_m}{f_g U_m}$$

 $f_0 = \frac{1}{T_0} \qquad f_v = \frac{1}{T_v}$ U_m/2 + 0 $T_0 = MT_v$ -U_m/2

F(f) [dB]

f₀

0

Fázový závěs

 $\Delta \varphi(p) = \frac{K_{\varphi} K_F K_0(p)}{p + K_{\varphi} K_F K_0(p)} \qquad \begin{array}{l} \mathsf{K}_F = \mathsf{K}, \ \Delta \phi \neq 0\\ \mathsf{K}_F = \mathsf{K}/(1 + j\omega/\omega_0), \ \Delta \phi = 0 \end{array}$

 U_2 0 $2\Delta f_z$ U_2 $2\Delta f_s$ f₁ 0

rozsah synchronizace 2∆fs (Long Range) rozsah zachycení 2∆fz (Capture Range).

doba zavěšení Tz (Lock-up-Time),

Analogový fázový detektor

Zapojení podobné analogové násobičce

$$u_1(t) = U_{1m} \cos \omega_1 t \qquad u_2(t) = U_{2m} \sin(\omega_2 t + \varphi)$$

$$U_{\varphi} = \frac{K_{\varphi}}{2} U_{1m} U_{2m} \{ sin \left[(\omega_1 + \omega_2)t + \varphi \right] - sin \left[(\omega_1 - \omega_2)t - \varphi \right] \}$$

$$\boldsymbol{\omega}_{1} = \boldsymbol{\omega}_{2} \qquad \boldsymbol{U}_{\varphi} = -\frac{K_{\varphi}}{2} \boldsymbol{U}_{1m} \boldsymbol{U}_{2m} [\sin \varphi]$$

Kmitočtový syntezátor

- KO krystalový oscilátor, stabilita až 10^{-7/0}C FD fázový detektor VCO napěťově řízený oscilátor
- DP dolní propust
- N₁, N₂ dělicí poměry kmitočtových děličů

Syntéza náhodných signálů

Generátor pseudonáhodného signálu

Nerovnoměrné rozložení pravděpodobnosti výskytu slov tabulkovou korekcí

Kmitočtový rozsah f_v/2

Testování dynamických vlastností digitalizátorů

Testovací metody:

- metoda nejlépe proložené sinusovky (Sine Wave Fit Test)
- metoda spektrální analýzy (Discrete Fourier Transform Test)
- metoda měření četnosti výskytu kódových slov (Histogram Test)

Testovací signály:

- jedno, dvou, multitónové
- modulované signály (AM, FM)
- rozmítaný sinusový signál
- impulsní signály (tlumená sinusovka, sinx/x)
- šumové signály (s konstantní a proměnnou střední hodnotou)

IEEE Standard 1057-1994, "IEEE Standard for Digitizing Waveform Recorders"

IEEE Standard 1241 - 2000, "IEEE Standard and Terminology and Test Methods for Analog to Digital Converters" IEEE Standard 1658 - 2010, "IEEE Standard and Terminology and Test Methods for Digital to Analog Converters"

Kritické parametry digitalizátorů

využití	rozlišitelnost	Vzorkovací kmitočet	parametry
Audio	16 - 24	48 kS/s – 96 kS/s	SINAD, ER, CT, FD, IMD
Automatizace, senzorika, robotika	8 - 16	10 MS/s - 100 kS/s	SINAD, SNHR, INL, DNL, SR
Systémy sběru dat	12 - 24	100 MS/S – 1 kS/s	SINAD, SFDR, SNHR, ER, IMD
Osciloskopy	8 - 12	20 GS/s – 1 GS/s	BW, SINAD, THD, SFDR
Spektrální analýza	16 - 24	10 Ms/s – 2,5 MS/s	SINAD, SFDR, IMD
Přenos dat	12 - 16	500 MS/s – 10 MS/s	SFDR, BW, SINAD, DR, INL, DNL, SNHR
Mobilní komunikace	12 - 16	500 MS/s – 4 GS/s	SINAD, SFDR, THD, IMD, ENOB,
Geofyzika	16 - 24	100 kS/s – 1 kS/s	THD, SINAD, DR, ER
Medicína	16 - 24	10 MS/s - 100 kS/s	SFDR, BW, INL, DR, SNHR
Radary a sonary	8 - 16	10 GS/s – 10 MS/s	SINAD, SFDR, INL, BW
RF, Video, televize	8 - 12	10 MS/s – 50 MS/s	INL, DNL, SNHR, SFDR, BW, THD, SINAD, DG, DF

Jednotónová metoda nejlépe proložené sinusovky (Single Tone Fit Test)

Digitalizátor je buzen sinusovým signálem, z jehož vzorků *u*(i) je *4 parametrovou metodou nejmenších čtverců* (amplituda, kmitočet, ss. složka, fáze) rekonstruován sinusový průběh

$$ENOB_{1T} = n - \log_2 \frac{RMS_{Fit}}{RMS_q} (bit)$$

$$RMS_{Fit} = \sqrt{\frac{1}{M} \sum_{k=1}^{M} \left[u_k - A \sin(\omega t_k + \Phi) - DC \right]^2}$$

Vlastnosti metody:

- vyžaduje malý počet odebraných vzorků M
- rychlá iterace
- klasická metoda určení ENOB
- použitelná i pro vícetónové signály

$$RMS_{q} = \sqrt{\frac{1}{q} \int_{-q/2}^{q/2} u^{2} dx} = \frac{2^{-n}}{\sqrt{12}}$$

$$SINAD_{1T} = \frac{RMS_{Sin}}{RMS_{q}} = \frac{1/\sqrt{2}}{2^{-n}\sqrt{12}}$$

$$SINAD_{1T}(dB) = 6,02n+1,76$$

Jednotónová metoda spektrální analýzy (Single Tone Discrete Fourier Transform Test)

Digitalizátor je buzen sinusovým signálem, jehož vzorky x(i) jsou diskrétní Fourierovou transformací převedeny do frekvenční oblasti

$$X(k) = \sum_{i=0}^{M-1} u(i) e^{-j2\pi i k/M}$$

M počet vzorků

frekvenční rozlišitelnost

při *nekoherentním vzorkování* $f_s/f_1 \neq k/I$ dochází k rozmazávání spektra (leakage)

nutno užít okénkování (Blacmann-Harris 4. řádu)

$$ENOB_{1T} = \frac{SINAD_{1T}(dB) - 1,76}{6,02}$$

Dvoutónová metoda spektrální analýzy (Dual Tone Discrete Fourier Transform Test)

Digitalizátor je buzen dvěma sinusovými signály o nesoudělných kmitočtech

$$u(t) = U_{f_1} \sin \omega_1 t + U_{f_2} \sin \omega_2 t$$

$$THD_{2T} = \sqrt{\frac{\sum_{k=2,3..} U_{kf_1}^2 + \sum_{l=2,3,..} U_{lf_2}^2}{U_{f_1}^2 + U_{f_2}^2}}$$

$$SINAD_{2T} = \sqrt{\frac{U_{f_1}^2 + U_{f_2}^2}{U_n^2 + \sum_{k=2,3..} U_{kf_1}^2 + \sum_{l=2,3,..} U_{lf_2}^2}}$$

$$IMD_{2T} = \sqrt{\frac{\sum_{k,l=1,2,..} U_{kf_1 \pm lf_2}^2}{U_{f_1}^2 + U_{f_2}^2}} \qquad CF = \frac{U_m}{U_{EF}} = 2$$

$$SINAD_{2T}(dB) = 6,02ENOB_{2T} + 4,77 - 20\log CF$$

 $SINAD_{2T}(dB) = 6,02ENOB_{2T} + 1,25$

Výsledky testování 1 a 2 tónovým signálem

digitalizátorů

Multitónová metoda (Multi Tone Discrete Fourier Transform Test)

m _{MT}	1	2	4	8
CF _{MT}	√2	2	2√2	4
∆SINAD	0	- 3dB	- 6dB	- 12dB
∆ENOB	0	- 0,5	- 1	- 1,5

Digitalizátor je buzen více sinusovými signály o nesoudělných kmitočtech

$$u_{\rm MH} = \sum_{i=1}^{m} U_{f_i} \sin(\omega_i t)$$

$$SINAD_{MT} = \sqrt{\frac{\sum_{i=1}^{m} U^{2}(f_{i})}{U_{n}^{2} + \sum_{i=1}^{m} \sum_{k=1,2,..} U^{2}(kf_{i})}}$$

 $ENOB_{MT} = \frac{SINAD_{MT}(dB) - 1,76 + 10\log m}{6.02}$

$$U_{f_i} = 1/2m \qquad CT_{\rm MH} = \sqrt{2m}$$

$$MTD = \sqrt{\sum_{i=1}^{m} \sum_{k=1,2,..} U^{2}(kf_{i}) / \sum_{i=1}^{m} U^{2}(f_{i})}$$

Výsledky testování 3 a 4 tónovým signálem

Testování AM signálem

Digitalizátor je buzen AM signálem
s hloubkou modulace $m_{\rm AM} = U_{\rm m}/U_{\rm n}$

$$u_{AM} = (U_{n} + U_{m} \cos \omega_{m} t) \cdot \sin \omega_{n} t =$$

$$U_{n} \sin \omega_{n} t + \frac{U_{m}}{2} [\sin(\omega_{n} - \omega_{m}) \cdot t + \sin(\omega_{n} + \omega_{m}) \cdot t]$$

$$SINAD_{AM} = U_n \sqrt{\frac{1 + 2m_{AM}^2}{\sum_{i=kM/2, k=1, 2, \dots}^m U_{f_i}^2 - 2m_{AM}^2}}$$

				El
m _{AM}	0,25	0,5	1	
CF _{AM}	1,74	2,0	2,3	
$\Delta SINAD$	-1,8	- 3dB	- 4,3dB	
ΔENOB	-0,3	- 0,5	- 0,7	

$$ENOB_{AM} = \frac{SINAD_{AM} - 4,74 + 20\log CF_{AM}}{6,02}$$
 (*bit*)

$$CF_{\rm AM} = \frac{2(1+m_{AM})}{\sqrt{2+m_{AM}^2}}$$

Výsledky testování AM signálem

Testování FM signálem

Digitalizátor je buzen FM signálem s modulačním indexem $m_{\rm FM}$ = $\Delta\omega/\omega_{\rm m}$

$$u_{\rm FM} = U_{\rm n} \sin\left(\omega_{\rm n}t + \frac{\Delta\omega}{\omega_{\rm m}}\sin\omega_{\rm m}t\right)$$

 $\omega_n(t) = \omega_{n0} + \Delta \omega \cos \omega_m t$

$$u_{FM}(t) = U_n \begin{bmatrix} \sin \omega_n(t) \cdot \cos(m_{FM} \sin \omega_m t) + \\ \cos \omega_n(t) \cdot \sin(m_{FM} \sin \omega_m t) \end{bmatrix}$$

$$ENOB_{\rm FM} = \frac{SINAD_{\rm FM}(dB) - 4,77}{6,02}$$

$$CF_{FM} = 1$$

Výsledky testování FM signálem

Testování rozmítaným signálem

Digitalizátor je buzen lineárně rozmítaným sinusovým signálem s konstantní amplitudou v kmitočtovém rozsahu f_1 až f_2

$$u(t) = U_m \cdot sin\left[2\pi t \left(\frac{t-t_0}{\Delta t} (f_1 - f_2) + f_2\right) + \varphi\right]$$

Čtyřparametrovou metodou nejmenších čtverců se určí rozptyl, který se ztotožní s *RMS*_{FIT}

$$ENOB = n - \log_2 \frac{RMS_{Fit}}{2^{-n} / \sqrt{12}}$$

A3M38ZDS_12 Testování digitalizátorů 59

Testování tlumenou sinusovkou

f ₁ (kHz)	f ₂ (kHz)	d	CF_{DSW}
5	1	0,016	1,74
5	1	0,032	2,05
5	1	0,064	2,59
5	1	0,127	3,33
5	1	0,255	4,04

Digitalizátor je buzen tlumenou sinusovkou s činitelem útlumu *d*

$$u(t) = e^{-2 \cdot \pi \cdot f_1 \cdot d \cdot t} \sin(2 \cdot \pi \cdot f_1 \cdot t)$$

$$CF_{DSW} \cong \frac{2e^{-d\frac{\pi}{2}}}{\sqrt{\left(1 - e^{\frac{-4\cdot\pi \cdot d \cdot f_1}{f_2}}\right)f_2}}}$$

$$ENOB_{\rm DSW} = \frac{SINAD_{\rm DSW}(dB) - 4,77}{6,02}$$

Změnou *d* lze měnit činitel výkyvu *CF*_{DSW} a tím i obsah harmonických složek v testovacím signálu

Výsledky testování tlumenou sinusovkou

Testování signálem sinx/x

Digitalizátor je buzen impulsním signálem sinx/x se střídavou polaritou impulsů

$$u(t) = H\left(t + \frac{T_1}{2}\right)\left(\frac{\sin(2\pi t/T_2)}{2\pi t/T_2}\right) - H\left(t - \frac{T_1}{2}\right)\left(\frac{\sin(2\pi t/T_2)}{2\pi t/T_2}\right)$$

$$ENOB_{Sinx/x}(dB) = \frac{SINAD_{Sinx/x} - 4,77 + 20\log CF_{sinx/x}}{6,02}$$

Analytické určení CF_{SINC} je nemožné

T_{1}/T_{2}	počet tónů <i>m</i>	CF_{SINC}
15	17	5,5
30	31	7,8
150	143	17,3

Výsledky testování signálem sinx/x

Porovnání výsledků testování

signál	Činitel výkyvu	SINAD (dB)	ENOB (bit)
1 tónový, 15987.41 kHz	1.4	86,6	14,1
2 tónový, 3357.87 kHz, 7359.87 kHz	2.0	86,0	14.0
4 tónové, 3357.87 kHz, 7359.87 kHz, 9784.52 kHz, 15987.41 kHz	2.8	85,4	13.9
AM signál <i>f</i> c = 7.78 kHz	1.7 – 2,3	86,6	14,1
FM signál, <i>f</i> c = 10 kHz	1.0	85,4	13.9
Rozmítaný signál, 1 kHz – 16 kHz	1,4	89,0	14.5
Tlumená sinusovka, 1 kHz – 16 kHz	1,7 - 4	86,6	14.1
Sinx/x, 170 Hz – 17kHz	5,6 – 17,4	84,8	13,8

Histogramová metoda měření četnosti výskytu kódových slov

Digitalizátor je buzen sinusovým signálem a je měřena poměrná četnost výskytu kódových slov.

Diferenciální nelinearita

$$DNL(i) = \frac{p_i}{p_{ideal}} - 1$$

Integrální nelinearita

$$INL_{j} = -\sum_{i=2}^{j} DNL_{i}$$

Minimální počet vzorků

$$N_{min} \approx 2^n \frac{k^2}{\varepsilon^2}$$

n počet bitů, *k* intervalový odhad, ε nejistota určení *DNL*

$$n = 8, k = 1,96(95\%), \epsilon = 3\%, N_{min} = 10^{6}$$

Rozlišitelnost ADC 16 bitů Počet odebraných vzorků: 256 MB

+DNLmax = 1,5LSB
-DNLmax = 0,7 LSB
+ INLmax = 2 LSB
-INLmax = 4,2 LSB

Počet chybějících kódových slov: 34

Testování šumovým signálem

Vstup digitalizátoru je buzen šumovým signálem u_n s rozkmitu větším, než je rozsah digitalizátoru.

Metodou měření četnosti výskytu kódových slov *p*_j se určí diferenciální nelinearity jeho převodní charakteristiky

 $DNL_i = \frac{w_i - 2^{-n}}{2^{-n}} = p_i - 1$

Ρ

$$INL_j = -\sum_{i=1}^{2^n - 2} DNL_i$$

$$\sqrt{\frac{1}{12} + \frac{1}{2^n - 2} \sum_{i=1}^{2^n - 2} INL_i^2}$$

$$ENOB = n - \log_2 \frac{2^n}{\sigma_c \sqrt{12}}$$

Měřicí systém pro testování šumovým signálem

HP33120A Generátor pseudonáhodného signálu

HPE3631A Regulovatelný ss. zdroj napětí

KH3490 Přeladitelný filtr - dolní propust 2. řádu Butterworth

HP34401A číslicový multimetr

Výsledky testování šumovým signálem

Diferenciální nelinearita

Přednost:

nekorelovatelnost vzorkovacího a vzorkovaného signálu, nemožnost vzniku záznějů

Nevýhoda:

nutnost užití velkého počtu vzorků

Minimální počet vzorků

$$N_{\min} \approx 2^n \frac{k^2}{\varepsilon^2}.$$

n počet bitů, k intervalový odhad, ϵ nejistota určení DNL

$$n = 8, \ k = 1,96(95\%), \ \epsilon = 3\%, \ N_{\min} = 10^6$$

Integrální nelinearita

Výsledky testování šumovým signálem

AD14: 14 bit, 250kS/s, *ENOB*(1kHz) = 11,6 bit

Vlastní šum digitalizátoru

Zásady návrhu a aplikace A/Č obvodů

Způsoby buzení A/Č převodníků Rušivé signály Napájení A/Č systémů Impedanční přizpůsobení Stínění elektronických obvodů Zásady návrhu tištěných spojů Přenos signálů z hlediska EMC Mikropásková vedení Oddělení napájecích a signálových zemi
Buzení A/Č převodníků – asymetrický vstup, asymetrické buzení A/Č, jednoduché napájení

Buzení A/Č převodníků – asymetrický vstup, asymetrické buzení A/Č, jednoduché napájení, Rail to Rail

Buzení A/Č převodníků - vstupy A/Č převodníků SC technologie

A3M38ZDS_13

Buzení A/Č převodníků – asymetrický vstup, asymetrické buzení A/Č

Buzení A/Č převodníků - asymetrický vstup, symetrické buzení A/Č

Převzato: www.analog.com

A3M38ZDS_13

Rozdílový zesilovač s rozdílovým výstupem

Buzení A/Č převodníků - asymetrický vstup, symetrické buzení A/Č

Buzení A/Č převodníků - asymetrický vstup, symetrické buzení A/Č

Převzato: www.analog.com

A3M38ZDS_13

Buzení A/Č převodníků - asymetrický vstup, symetrické buzení A/Č – šumová kalkulace

Buzení A/Č převodníků - transformátorové a kapacitní vazby

Převzato: www.analog.com

A3M38ZDS_13

Rušivé signály

Zdroje elmg. rušení: přirozené (slunenční záření, atmosférické poruchy, blesky)

umělé (silové stroje, transformátory, motory, el. pece, vysílače)

Vazební médium: vodiče (galvanické vazby), izolanty (kapacitní a indukční vazby)

Ss. rušivé signály: úbytky napětí na vodičích

izolace signálů (izolační zesilovače)

termoelektrická napětí - eliminace teplotní egalizací, párováním spojů

A3M38ZDS 13

(spoje Cu-Cu, Cu-Ag, Cu-Au, Cu-70Cd30Sn 0,3 μ V/K, Cu-PbSn 3 μ V/K, CuCuo 1 mV/K)

Stř. rušivé signály: elektrostatická indukce, elektromagnetická indukce

Napájení A/Č systémů

Rozvod zemí a napájení analogově číslicového systému

Filtrace napájecích napětí

-U_B

10µF

_<u>||10nF</u>

10nF

|| 10μF

1μF 1Ω

1μF 1Ω

Filtrace napájecí sítě

Nulová ss. indukce - nedochází k přesycení jádra a tím k redukci indukčnosti

Koaxiální tlumivka

A3M38ZDS 13

Impedanční přizpůsobení

Parazitní kapacity a indukčnosti

Př.: 10 cm spoj, I = 0,1A, di/dt = 0,1A/10ns, $R = 102 \text{ m}\Omega$, L = 214 nH, $\Delta U_R = RI = 10,2 \text{ mV}$, $\Delta U_1 = L \text{ di/dt} = 2,14 \text{ V}$

napětí *U*_L překračuje šumovou imunitu obvodů HCMOS 0,9 V - zkrátit přívody k blokovacímu C

Spoj je nutno impedančně přizpůsobit, je-li dvojnásobek zpoždění průchodu signálu větší, než je doba trvání nástupné hrany T_r nebo sestupné hrany T_f obvodu.

Obvod	<i>l</i> (mA)	T _r (ns)	$\Delta U_{\rm m}({ m V})$	<i>C</i> (pF)
TTL	16	8	0,4	1,6
LS	8	5	0,4	0,5
CMOS (5V) 1	70	1,2	0,3
CMOS (12)	V) 1	25	3	0,1
HCMOS	15	3,5	0,7	0,4

Stínění elektronických obvodů

Elektrostatického stínění - stínící kryty z vodivého materiálu (skin efekt) **Elektromagnetické stínění** - ocelový plech, hliník, permalloy PY76 (24Fe + 76Ni) Tloušťka stínícího krytu $d >> \delta$ (hloubka vniku)

vniku Fe, A	l a Cu			
δ _{Fe} [mm]	δ _{Al} [mm]	δ _{Cu} [mm]	$\delta = \sqrt{\frac{\rho}{\pi f \mu}}$	μ [H/m] permeabilita, $ ho$ [Ω m] měrný odpor
0,88	11,2	8,9	1.975	
0,68	8,5	6,6	D L	$(\langle S \rangle)$ otioioi vittum
0,2	2,7	2,1	$B = \kappa \exp(a$	
0,08	0,84	0,66		
0,02	0,3	0,2	$B_n \approx B^n n$	– počet stínících krytů
0,008	0,08	0,08		
	rniku Fe, A δ _{Fe} [mm] 0,88 0,68 0,2 0,08 0,02 0,02 0,008	vniku Fe, Al a Cu δ_{Fe} [mm] δ_{Al} [mm]0,8811,20,688,50,22,70,080,840,020,30,0080,08	vniku Fe, Al a Cu δ_{Fe} [mm] δ_{Al} [mm] δ_{Cu} [mm]0,8811,28,90,688,56,60,22,72,10,080,840,660,020,30,20,0080,080,08	vniku Fe, Al a Cu $\delta_{Fe} [mm]$ $\delta_{AI} [mm]$ $\delta_{Cu} [mm]$ $\delta = \sqrt{\frac{\rho}{\pi f \mu}}$ 0.8811.28.90.688.56.6 $B = k \exp(dt)$ 0.22.72.1 $B = k \exp(dt)$ 0.080.840.66 0.02 0.3 0.2 0.080.080.08 0.08 0.08

Jednoduché stínění: B = 10 až 10², vícenásobné stínění $B = 10^2$ až 10³

Aktivní stínění: vnějším magnetickým polem, generovaným na základě měření magnetického pole stíněného prostoru B = 10³ až 10⁴

Stínění magnetického pole Země: 80 A/m \pm 5 A/m

Tvar stínícího krytu: uzavřený tažený nebo svařený tvar, oblé hrany, malé otvory

Materiál: čisté Fe, Permalloy, Ferit

Zásady návrhu tištěných spojů

Volba nízkopříkonových součástek s maximální hustotou integrace - minimalizace rušení

Rozmístění součástek směrem od vyšší k nižší šířce pásma

Volba minimálního vzorkovacího kmitočtu - omezení rušení

Rozvod vzorkovacích signálů harmonickým, příp. lichoběžníkovým průběhem - minimalizace výskytu vyšších harmonických

Prokládání datových spojů uzemněnými vodiči - snížení přeslechu až o 20 dB

Řazení vrstev plošných spojů

vrstvy	1	2	3	4	5	6	7	8	9	10	Pozn.
2	S1 (G)	S2 (P)									
4 (2S)	S1	G	Р	S2							
6 (4S)	S1	G	S2	S3	Р	S4					
6 (4S)	S1	S2	G	Р	S 3	S4					
6 (3S)	S1	G	S2	Р	G	S3					
8 (6S)	S1	S2	G	S3	S4	Р	S5	S6			
8 (4S)	S1	G	S2	G	Р	S3	G	S4			EMC
10(6S)	S1	G	S2	S3	G	Р	S4	S5	G	S6	EMC
S signálová vrstva P napájení G zem											

Ukončení plošných spojů na okraji desky - pravidlo 20h Ucc

h

A3M38ZDS_13

GND

Přenos signálů z hlediska EMC

A3M38ZDS 13

Mikropásková vedení

Oddělení napájecích a signálových zemi

Oddělení napájecích zemí

Antiparalelně zapojené Schottky diody

chrání analogově číslicové obvody proti působení elektrostatického napětí.

Izolační přemostění izolační příkop

Izolační přemostění

soustřeďuje signály do určitého místa a nevyžaduje jejich galvanickou izolaci.

Země AGND a DGND jsou přemostěny tlumivkou cca 47µH

Izolační příkop

Izolační příkop

galvanicky izoluje analogově číslicové obvody od číslicových obvodů.

Vyžaduje užití izolačních transformátorů (optronů) a DC/DC měniče.

Příklad zapojení rychlého systému

Vrstvy tištěných spojů rychlého systému

